The Basics of Lasers and Laser Welding & Cutting

Tim Morris
Technical Sales Manager
TRUMPF Inc., Laser Technology Center
Agenda

1. Basics of lasers

2. Basics of laser welding

3. Summary
Advantages of laser welding

- **Flexibility** …
 - beam manipulation (beam switching and sharing)
 - variety of product geometries and materials
 - ease of back-up (especially YAG)

- **Often faster than other techniques** …
 - high power density weld process
 - high laser uptime (>98%)

- **Cost savings** …
 - high productivity
 - reduction of scrap and re-work
 - reduction of manual labor
 - reduction of component material and weight
 - can eliminate secondary processes
Laser basics

- **LASER**
 - Light Amplification by Stimulated Emission of Radiation

- Active Laser Media
 - Nd:YAG (Rod Laser)
 - Neodymium Yttrium Aluminum Garnet
 - Yb:YAG (Disk Laser)
 - Ytterbium Yttrium Aluminum Garnet
 - CO₂ (Gas Laser)
Laser basics

- Nd:YAG (Rod Laser) $\lambda = 1064 \text{ nm}$
- Yb:YAG (Disc Laser) $\lambda = 1030 \text{ nm}$
- CO$_2$ (Gas Laser) $\lambda = 10600 \text{ nm}$
Laser basics

Power supply

Laser pump
(e.g. lamp, diode, RF)

Mirror 1

Mirror 2

Laser active medium
(e.g. Nd:YAG, Yb:YAG, CO₂)

Resonator

Laser beam
Characteristics of laser light

- Many colors
- Many directions
- Many phases

- One color >> select laser for application
- One direction >> can capture all the beam energy
- One phase >> maximum energy at workpiece
Spot size – CO₂

\[d_f = M^2 \left(\frac{4\lambda f}{\pi D} \right) \]
Spot size - YAG

\[d_f = M^2 \left(\frac{4 \lambda f}{\pi D} \right) \]

\[d_f = 3BQ \left(\frac{4 \lambda f}{\pi D} \right) \]

\[d_w = \phi_c \left(\frac{f}{f_c} \right) \]
Power density

- Power density = power per unit area
- Power density of an unfocused 6 kW CO\textsubscript{2} HQ laser is about 1,000 W/cm2
- Power density of a focused 6 kW CO\textsubscript{2} laser (f200mm) is about 50,000,000 W/cm2
Effects of Beam Quality

<table>
<thead>
<tr>
<th>Beam-quality</th>
<th>Spot-diameter</th>
<th>Working distance</th>
<th>Depth of focus</th>
<th>Optics</th>
<th>Working area of a scanner optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm*mrad (LP rod)</td>
<td>![Spot-diameter image]</td>
<td>![Working distance image]</td>
<td>![Depth of focus image]</td>
<td>![Optics image]</td>
<td>![Working area image]</td>
</tr>
<tr>
<td>4-8 mm*mrad (DP disk)</td>
<td>![Spot-diameter image]</td>
<td>![Working distance image]</td>
<td>![Depth of focus image]</td>
<td>![Optics image]</td>
<td>![Working area image]</td>
</tr>
</tbody>
</table>

With same Focussing optics

With same Spot diameter
Focal length

Key advantages of short focal length:

- Faster weld speed
- Less heat input

Key advantages of long focal length:

- Longer depth of focus
- Further from weld spatter & smoke
CO\textsubscript{2} vs. YAG

CO\textsubscript{2} considerations ...

- Higher powers
- Better focusability
- Higher weld speeds on materials non-reflective to CO\textsubscript{2} wavelength
- Deeper weld penetration on materials non-reflective to CO\textsubscript{2} wavelength
- Lower capital and operating costs
- Less expensive safety precautions
CO$_2$ vs. YAG

YAG considerations ...

- Fiber optic beam delivery
 (*esp. robotic applications*)

- Materials reflective to CO$_2$ wavelength can often be welded

- Easy beam alignment, beam switching and beam sharing

- Argon can be used for shield gas (plasma suppression not required)

- Long and varied fiber lengths with no effect on process

- High peak powers with high energy per pulse
Heat conduction welding

Description
Heating the workpiece above the melting temperature without vaporizing

Characteristics
- Low welding depth
- Small aspect ratio
- Low coupling efficiency
- Very smooth, highly aesthetic weld bead

Applications
Laser welding of thin workpieces like foils, wires, thin tubes, enclosures, etc.
Keyhole welding

Description
Heating of the workpiece above the vaporization temperature and forming of a keyhole

Characteristics
- High welding depth
- High aspect ratio
- High coupling efficiency
Description

Heating of the workpiece above the evaporating temperature and creation of a keyhole because of the ablation pressure of the flowing metal vapor, power density of $10^5 - 10^6$ W/cm2

Characteristics

- High cutting depth
- Fine cutting precision
- Very low heat input
Seam and joint types

<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Seam weld on butt joint | ![Example](image1.png) | + weld fusion area
- positioning tolerance |
| Lap weld on lap joint | ![Example](image2.png) | + positioning tolerance
- weld fusion area |
| Fillet weld on lap joint | ![Example](image3.png) | + weld fusion area
- positioning tolerance |
| Fillet weld on T-joint | ![Example](image4.png) | + weld fusion area
- positioning tolerance |
<table>
<thead>
<tr>
<th>Name</th>
<th>Example</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lap weld on T / border joint</td>
<td></td>
<td>+ positioning tolerance - weld fusion area</td>
</tr>
<tr>
<td>Seam weld on flange</td>
<td></td>
<td>+ weld fusion area - positioning tolerance</td>
</tr>
<tr>
<td>Lap weld on formed seam</td>
<td></td>
<td>+ positioning tolerance - weld fusion area</td>
</tr>
</tbody>
</table>
Seam and joint tolerances

Butt joint configuration:

- Gap: 3-5% thickness of thinnest sheet
- Offset: 5-12% thickness of thinnest sheet

Overlap joint configuration:

- Gap: 5-10% thickness of thinnest sheet

Why is this general guideline not absolute?

(What influences the amount of gap that can be bridged?)
Laser Welding & Cutting

Examples
Remote welding with Disk Laser
Register Enclosure

- **Material**
 - Stainless Steel
 - Thickness 0.040”

- **Laser Welding Strategy**
 - Heat Conduction Welding
 - Shield Gas He
Register Enclosure

Example: Housing 16”x24”x10”

Production time in [min.]

- Laser welding
 - 4 min
 - 3 min
 - 2 min

- MIG welding
 - 24 min
 - 10 min
 - 3 min
 - 2 min

ca. 30 min.

1) Cutting out the blank
2) Bending
3) Welding (with fixture)
4) Grinding and cleaning
2. Elimination of Post Processing: OLYMPUS – Display Enclosure

<table>
<thead>
<tr>
<th></th>
<th>Manual welding</th>
<th>Laser welding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(manual 56 €/hour)</td>
<td>10 Min</td>
<td>4 Min</td>
</tr>
<tr>
<td></td>
<td>9.33 €</td>
<td>9.33 €</td>
</tr>
<tr>
<td>Grinding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(manual 48 €/hour)</td>
<td>24 Min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.20 €</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.53 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.20 €</td>
</tr>
<tr>
<td>in %</td>
<td></td>
<td>67%</td>
</tr>
</tbody>
</table>
Laser Welding in Sheet Metal Manufacturing
3-D Laser Cutting
Laser Welding

Keys to Success
Outline

• Early involvement from production personnel
• Creating a laser champion
• Selecting partners for success
• Considering the ambient environment
• Design for maintenance and service
• The making of exceptional operators and maintenance personnel
• Commitment to training
• Not sparing the spares
• Conclusion
Early involvement from production personnel

Include plant personnel early in the process
> relational and philosophical disconnect between engineering and plant personnel can result in implementation delays and reduced system operational efficiency

> Early involvement is the key to ...
 • ownership
 • technology transfer
 • acceptance
 • integrating suggestions based on plant experience

> In summary ...
 • involve
 • lead
 • listen
 • expect great things
Creating a laser champion

Appoint plant laser champion
> not having a laser champion at the using plant can increase system downtime and reduce system operational efficiency

• appointing a champion

• characteristics of a champion
 > ideally a welding or mechanical engineer
 > has an interest in laser technology
 > will be around for awhile
 > is teachable/trainable
 > can teach others

• shepherding the champion
 > instilling the vision
 > provide and support key training
 > enablement - authority and focus
Selecting and mentoring operators and maintenance personnel
> inappropriate selection of operators and maintenance personnel can increase system downtime and reduce system operational efficiency

- **selecting** (when allowed)
 > attitude
 > aptitude

- **training**
 > need to know how to safely operate and maintain the system in all “modes”
 > need to know how components function
 > need to know when the system is not operating at optimal performance
 > laser training at using site vs. TRUMPF
 > supplemented by laser champion and LSO (on-going)

- **empowering**
 > proportional to mentoring and training
 > proportional to attitude and aptitude
Commitment to training

Training of laser personnel
> inadequate and improper training of key laser personnel can increase system downtime and reduce system operational efficiency

• commitment to training = commitment to quality

• training requires investment (time and money)

• it’s more than just cranking out parts (safety, operator, maintenance, application, LSO, technology transfer, etc.)
Not sparing the spares

In-house spares
> inadequate appropriation of spare parts can increase system downtime and reduce system operational efficiency

• “We’ll take care of that later.”

• the role of tele-diagnostics
Advantages of laser welding

- **Flexibility …**
 - beam manipulation (beam switching and sharing)
 - variety of product geometries and materials
 - ease of back-up (especially YAG)

- **Often faster than other techniques …**
 - high power density weld process
 - high laser uptime (>98%)

- **Cost savings …**
 - high productivity
 - reduction of scrap and re-work
 - reduction of manual labor
 - reduction of component material and weight
 - can eliminate secondary processes
Conclusion

What I am NOT saying ...

• ignore economics and cost justification
• forget about the details of laser physics
• don’t bother with prototype parts and DOE’s
• underestimate the mechanical & electrical engineering considerations
• tooling and part fit-up are no big deal
• part cleanliness doesn’t matter
Conclusion

What I am saying ...

- continue to do all these things better than ever before

- re-emphasize and strongly consider these items ...
 > involve key people from production personnel early in the process
 > create a laser champion at the using plant
 > select partners that have proved themselves – over and over again
 > consider the ambient environment
 > insure the issues of maintenance and service are not overlooked in the system design
 > be truly committed to training and mentoring operators and maintenance personnel
 > procure key spare parts before you need them
Thank you

TRUMPF Laser Technology Center
Plymouth, MI
(734) 354-9770